Vorota-21.ru

Стройка и Ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Минералогический состав цемента

Минералогический состав цемента

В 1824 г. английский каменщик Аспдин взял в графстве Йорк патент на изготовление гидравлического вяжущего, которое он назвал портландцементом по его внешнему сходству с известным естественным камнем с острова Портланд в Доршире. Надо, однако, заметить, что температура обжига смеси, при которой Аспдин вначале оперировал, не превосходила температуру обжига извести. Так что полученный Аспдином продукт хотя и представлял цемент, но не был тем продуктом, под которым мы в настоящее время понимаем портландцемент.

Установить время открытия настоящего портландцемента в ту пору было затруднительно. И лишь сравнительно недавно было установлено, что приоритет открытия портландцемента, в полном смысле как мы его понимаем, принадлежит русскому технику Егору Челиеву, который в 1825 г. предложил и выполнил обжиг сырьевой смеси до температуры спекания и получил настоящий портландцемент, который им был назван силикатным. Вообще, это название более правильное, хотя до сих пор этот цемент и носит название портландского. Следует сказать, что большой вклад в развитие производства цемента и теории твердения его сделали русские, а после революции советские ученые А. Р. Шуляченко, Н. А. Белелюбский, И. Г. Малюга, академики А. А. Банков, П. А. Ребиндер и многие другие.

Так что такое портландцемент в современном его понимании? Портландцементом называется гидравлическое вяжущее вещество, получаемое тонким измельчением обожженной до спекания смеси глины и углекислого кальция, с преобладанием в продукте обжига силикатов кальция. Спекшуюся сырьевую смесь, представляющую собой камневидные мелкие и крупные куски, называют клинкером. Получение портландцемента состоит как бы из двух технологических операций: получения клинкера путем обжига сырьевой смеси и помола этого клинкера в тонкий порошок.

Для получения клинкера портландцемента берется примерно 25 % глины и 75 % чистого известняка, т. е. состоящего на 100 % из углекислого кальция. Искусственно подобранная смесь или природный мергель указанного состава обжигается при температуре 1450 °С. В результате обжига из теплового аппарата выходит клинкер, который в дальнейшем размалывается в тонкодисперсный порошок, называемый цементом.

При помоле клинкера в цемент вносятся различные добавки для регулирования его свойств. В технологии получения цемента используются три технологические схемы, которые выполняются «мокрым», «сухим» и «комбинированным» способами. Ниже, на рисунке, показана технологическая схема получения портландцемента «мокрым» способом.

Наиболее сложной в этой схеме является операция обжига. Обжиг сырья осуществляется, как правило, во вращающихся печах различной длины. Печь условно разделена на шесть зон, в которых происходят по мере движения сырья различные процессы. В первой зоне при температуре 20-200 °С происходит испарение свободной воды из сырьевой смеси, во второй — до температуры 650 °С сгорают органические примеси и удаляется химически связанная вода. В третьей зоне с температурным интервалом 650-1200 °С минералы сырья разлагаются на отдельные оксиды, которые в экзотермической зоне до 1300 °С соединяются, образуя минералы C2S, C3A и C4AF. В пятой зоне — зоне спекания — образовавшаяся смесь переходит в расплав при температуре 1450 °С, в котором C2S частично насыщается оксидом кальция, образуя трехкальциевый силикат C3S. В последней зоне сырьевая смесь охлаждается, образуя клинкер в виде окатанных зерен серо-зеленоватого цвета. После охлаждения клинкер выгружается и подается на склад, где он выдерживается (магазинируется) и поступает в помольный цех.

Таким образом, в результате сложных химических превращений при обжиге в клинкере образуется ряд новых химических соединений, называемых минералами портландцемента, основными из которых являются четыре минерала, обеспечивающие портландцементу гидравлические свойства.

Минералогический состав цемента

Сэндвич-панели производство и продажа

  • Контакты:
  • Москва
  • Воронеж
  • Ростов-на-Дону
  • Челябинск
  • Нижний Новгород
  • Производство

Портландцемент

Портландцемент и его разновидности являются основным вяжущим материалом в современном строительстве. Портландцемент представляет собой порошкообразное гидравлическое вяжущее вещество, твердеющее в воде и на воздухе, состоящее главным образом из силикатов кальция. Получают портландцемент тонким измельчением клинкера с гипсом (3 . 7 %), допускается введение в смесь активных минеральных добавок (10 . 15 %). Клинкер — продукт обжига (до полного спекания) искусственной сырьевой смеси, состоящей приблизительно из 75 % карбоната кальция (обычно известняка) и 25 % глины. Основные свойства портландцемента обусловливаются составом клинкера.

Химический состав портландцемента. Портландцемент характеризуется довольно постоянным химическим составом. Содержание основных составляющих окислов в нем колеблется в сравнительно небольших пределах, %: СаО (64 . 67), SiО 2 (19 . 24), А l 2 О 3 (4 . 7), Fе 2 О 3 (2 . 6), MgO (не более 5), SО 3 (не менее 1,5 и не более З,5).

Минералогический состав портландцемента. В процессе обжига сырьевой смеси перечисленные окислы вступают в химическое взаимодействие:


Минералогический состав портландцемента

Сырье для получения портландцемента. В качестве сырья иногда используют природные горные породы — мергели. В них содержатся необходимые для производства портландцементов количества каронатных (75 . 78 %) и глинистых пород (25 . 22 %). В большинстве случаев необходимое сочетание пород получается искусственным путем. В этом случае в качестве карбонатных пород используются известняки, мел, известковые ракушечники; в качестве глинистых — глины, глинистые сланцы, лёссы, доменные шлаки; кроме того, в состав сырьевой смеси вводятся различные корректирующие добавки, например гипс.

Гипс необходим для регулирования сроков схватывания. С увеличением количества гипса увеличиваются (замедляются) сроки схватывания. Однако максимальное количество вводимого гипса регламентируется химическим составом портландцемента.

Производство портландцемента. Производство портландцемента состоит из следующих процессов: добычи сырья и доставки его на завод; подготовки сырья и смеси; обжига смеси — получения клинкера; измельчения клинкера с добавками — получения цемента.

По характеру подготовки сырья и приготовления смеси различают мокрый и сухой способы изготовления цемента. При мокром способе сырье дробят и размалывают без дополнительной подсушки. Весьма часто помол осуществляют с добавлением воды, глину размешивают в специальных емкостях — болтушках. Смесь готовят тщательным перемешиванием жидких молотых смесей в шламбассейнах. В этом случае подготовленная смесь — цементный шлам — содержит до 40 % и более воды.

При сухом способе тонкое измельчение исходного сырья — помол — осуществляют в сухом состоянии. Тщательное смешивание производят в специальных смесителях. В строительстве наиболее распространен мокрый способ, при котором удается достичь хорошей гомогенности сырьевой смеси, что в конечном итоге обусловливает получение цемента с более высокими и стабильными качествами. В связи с созданием оборудования, обеспечивающего хорошую гомогенизацию в смеси тонкомолотых порошков, сухой способ как более экономичный (не требующий теплоты на испарение воды) и, следовательно, перспективный находит все большее применение. В РФ действует несколько крупных цементных комбинатов, работающих по сухому способу.

Обжиг смеси производится во вращающихся печах, представляющих собой металлические цилиндры, обложенные внутри огнеупорной футеровкой. Печь укладывают на специальные катки с небольшим уклоном к поверхности земли, за счет чего по мере вращения сырьевая смесь продвигается по печи от приподнятого конца к опущенному. Длина печи достигает 180 м, а иногда доходит до 250 м, диаметр — до 6 м. По мере продвижения смесь подсушивается, скатывается в шарики и под действием высокой температуры (1450 . 1500 ° С) спекается в гранулы размером 5 . 20 мм и более. Затем гранулы охлаждаются сначала в печи, в зоне охлаждения, впоследствии — в специальных устройствах — холодильниках.

Читать еще:  Сколько мешков цемента на 1 куб фундамента

Существует и достаточно прогрессивный способ обжига клинкера. В печи силикатный расплав заменен расплавом на основе хлористого кальция. Существенно снижается температура обжига (1100 . 1150 ° С), в 3 .. .4 раза облегчается помол, но в цементе появляется минерал — алинит, содержащий алюмохлоридсиликат кальция. Этот цемент быстрее твердеет в начальные сроки.

Остывший клинкер подвергают размолу чаще всего в шаровых мельницах, представляющих собой металлические цилиндры диаметром до 3,5 и длиной до 15 . 20 м, которые выложены изнутри бронированными плитами. Мельницы имеют 2 . 3 камеры, отделенные друг от друга металлическими перегородками с отверстиями для прохождения размалываемого материала.

Размол клинкера и постепенное продвижение размалываемого материала обеспечиваются при вращении за счет наклона мельницы. По выходе из шаровой мельницы портландцемент подают на склад в силосы, где он остывает и выдерживается некоторое время, достаточное для стабилизации. Необходимость выдержки обусловливается тем, что при помоле, особенно если осуществляется помол еще не совсем остывшего клинкера (максимальная температура клинкера, подаваемого в шаровую мельницу, не должна превышать 50 ° С), происходит дегидратация вводимого гипса, получаемый при этом цемент будет обладать нестандартными сроками схватывания (ложное
схватывание).

Свойства портландцемента. К основным техническим свойствам портландцемента относятся: истинная плотность, средняя плотность, тонкость помола, сроки схватывания, нормальная густота (водопотребность цемента), равномерность изменения объема цементного теста, прочность затвердевшего цементного раствора. Истинная плотность цемента находится в пределах 3000 . 3200 кг/м3, плотность в рыхлом состоянии — 900 . 1300 кг/м3, в уплотненном (слежавшемся) — 1200 . 1300 кг/м3.

Тонкость помола характеризуется остатком на сите № 08 или удельной поверхностью, проверяемой на специальном приборе ПСХ. Согласно ГОСТ через сито № 08 должно проходить не менее 85 % массы пробы, удельная поверхность при этом (поверхность зерен цемента общей массой 1 г) должна быть 2500 . 3000 см2/г.

Нормальная густота цементного теста (количество воды в % от массы цемента) определяется погружением пестика, укрепляемого на штанге прибора Вика, и колеблется в пределах 21 . 28 %. Она зависит от минералогического состава цемента и тонкости помола. Изучение процесса твердения цемента показало, что в зависимости от вида цемента, сроков и условий твердения он присоединяет воды 15 . 25 % от своей массы. При использовании цемента в растворах и бетонах расходуемое количество воды значительно больше (40 . 70 %), оно, в частности, зависит и от нормальной густоты цементного теста. Излишки воды со временем испаряются, оставляя поры, что ухудшает качество цементного камня, а следовательно, раствора и бетона.

Сроки схватывания проверяют прибором Вика на цементном тесте нормальной густоты. Согласно требованиям ГОСТ начало схватывания должно быть не ранее 45 мин; конец — не позднее 10 ч (нормально — 2 . 3 ч), однако по согласованию с потребителями эти сроки могут существенно отличаться. О равномерности изменения объема цементного теста в процессе твердения судят по характеру трещин на образцах-лепешках, изготовленных по методике, изложенной в ГОСТ.

Если в цементе в результате нарушений технологического процесса при изготовлении окажется много свободных осадков кальция и магния, то процесс их гашения при затворении цемента водой будет протекать замедленно (температура обжига клинкера значительно выше температуры обжига при получении извести-кипелки, процесс гашения которой протекает довольно быстро). Это явление может привести к разрушению уже затвердевшего цементного камня. Для предотвращения подобных явлений при оценке качества цемента и проводят испытание на равномерность изменения объема.

Одним из основных свойств цемента является прочность, которая определяется в положенные сроки испытанием образцов (балочек) размером 40 х 40 х 160 мм первоначально на изгиб, а затем половинок — на сжатие. Балочки готовят из раствора состава 1:3 (1 ч. по массе цемента, 3 ч.- нормального вольского песка) при водоцементном отношении (отношении количества воды к количеству цемента), равном 0,4. Водоцементное отношение в свою очередь проверяется, а при необходимости корректируется по расплаву конуса на встряхивающем столике. Расплыв усеченного конуса из растворной смеси, изготовленного в форме высотой 60 мм и основаниями верхним с внутренним диаметром 70 мм и нижним — 100 мм, после 30 встряхиваний должен быть в пределах 106 . 115 мм. При отсутствии встряхивающего столика испытания проводят на стандартной лабораторной виброплощадке. В этом случае после 20 секунд вибрирования расплыв должен быть (170 ± 5) мм.

Твердение цемента. Твердение портландцемента — сложный физико-химический процесс. При затворении цемента водой основные минералы, растворяясь, гидратируются по уравнениям:

Образующиеся новообразования отличаются от первоначальных меньшей растворимостью и, выпадая в осадок, выкристаллизовываются, что приводит к потере пластичности (схватыванию) и последующему твердению. Добавка гипса в самом начале процесса при растворении взаимодействует с трехкальциевым алюминатом, образуя гидросульфоалюминаты, которые, обволакивая цементные зерна, замедляют процесс растворения и гидратации. Однако в последующем эти оболочки разрушаются (чем меньше гипса, тем замедление короче по времени) и процесс твердения ускоряется. Но сами выкристаллизовывающиеся новообразования начинают препятствовать гидратации, поэтому значительная часть зерен цемента может гидратироваться при наличии водной среды весьма продолжительный срок, измеряемый даже годами.

Цемент твердеет тем быстрее, чем больше в нем алита (алитовые цементы) и трехкальциевого алюмината. С течением времени процесс твердения резко замедляется. Цементы, содержащие много белита (белитовые цементы), в раннем возрасте твердеют медленно; нарастание прочности продолжается длительно и равномерно. Процессы твердения и особенно схватывания сопровождаются выделением теплоты, которая тем интенсивнее, чем быстрее протекает процесс схватывания. Поэтому в массивных конструкциях, как правило, применяют белитовые цементы. Использование в таких конструкциях алитовых цементов может привести к интенсивности тепловыделению, разогреву до высокой температуры (70 . 80 ° С), появлению трещин и даже потере воды, что в итоге приведет к утрате цементным камнем своих качеств. В то же время применение алитовых цементов позволяет быстрее получить минимальную прочность, а интенсивное тепловыделение обеспечивает в некоторых случаях необходимую для твердения температуру в зимних условиях.

При твердении цемента на воздухе происходит небольшая усадка, а в воде — набухание.

Минералогический состав портландцемента

Применяемые для производства портландцементного клинкера сырьевые материалы обеспечивают преобладание в нем высокоосновных силикатов кальция. Помимо этого, при взаимодействии с оксидами Al2O3 и Fe2O3 образуются отдельные группы минералов. Каждый из клинкерных минералов имеет свои специфические свойства.

Трехкальциевый силикат (алит) характеризуется химической формулой 3CaO·SiO2 (сокращенная запись C3S). Содержание его в портландцементе составляет 40–65 %. Являясь химически активным минералом, оказывает решающее влияние на скорость твердения цемента. Алит быстро набирает прочность, образуя довольно плотный продукт гидратации. При взаимодействии с водой выделяет большое количество тепла.

Двухкальциевый силикат (белит) имеет химическую формулу 2CaO·SiO2 (сокращенно C2S). По химической активности заметно уступает алиту. Продукт твердения белита, затворенного водой, в ранние сроки твердения имеет невысокую прочность, при этом выделяется очень мало тепла, однако в дальнейшем, при благоприятных условиях, в течение нескольких лет способен увеличивать прочность. Белита в портландцементе может содержаться от 15 до 40 %.

Трехкальциевый алюминат как химическое соединение выражается формулой 3CaO·Al2O33А). Имеет наибольшую химическую активность среди основных минералов портландцементного клинкера. Процесс его гидратации завершается в первые сутки твердения, при этом выделяется наибольшее количество теплоты. Однако продукт твердения трехкальциевого алюмината имеет низкую долговечность. Содержание в портландцементе С3А колеблется от 2 до 15 %.

Читать еще:  Устройство стяжек цементных толщиной 50 мм

Четырехкальциевый алюмоферрит (целит) принят в качестве клинкерного минерала как среднее значение содержащихся в портландцементном клинкере алюмоферритов кальция переменного состава. Химический состав выражается формулой 4CaO·Al2O3·Fe2O34АF). По химической активности занимает среднее положение между С3А и алитом. Продукт гидратации имеет прочность меньшую, чем у алита. В портландцементе С4АF может быть от 10 до 20 %.

В зависимости от минералогического состава различают следующие виды портландцемента:

алитовый: содержание C3S более 60 %, а соотношение C3S:C2S более 4;

белитовый: содержание C2S превышает 38 % при отношении C3S:C2S менее 1;

алюминатный, содержащий С3А больше 15 %;

алюмоферритный (целитовый), в котором С4АF содержится более 18 %.

Твердение портландцемента

Твердение портландцемента есть процесс превращения цементного теста (смеси портландцемента с водой) в цементный камень с образованием новых гидратных соединений.

При затворении портландцемента водой в начальный период происходит растворение клинкерных минералов с поверхности зерен цемента до образования насыщенного раствора. Растворение клинкерных минералов прекращается, взаимодействие с водой продолжается путем протекания реакций гидратации (присоединения воды к минералам клинкера) и гидролиза (разложение минералов на другие соединения под действием воды).

Второй период твердения – коллоидация – сопровождается прямой гидратацией клинкерных минералов в твердом состоянии без предварительного их растворения. Период коллоидации сопровождается повышением вязкости цементного теста, характеризующим процесс схватывания портландцемента.

В течение третьего периода протекают процессы перекристаллизации мельчайших коллоидных частиц новообразований. Результатом является рост крупных кристаллов, что обеспечивает твердение и увеличение прочности образовавшегося цементного камня.

Процессы, происходящие при взаимодействии клинкерных минералов с водой, характеризуются следующими уравнениями:

– гидролиз трехкальциевого силиката:

– гидратация двухкальциевого силиката:

– гидратация трехкальциевого алюмината:

– гидролиз четырехкальциевого алюмоферрита:

Имеющийся в портландцементе гипс вступает в реакцию с образующимся трехкальциевым гидроалюминатом:

Кристаллизующийся с присоединением большого количества воды труднорастворимый гидросульфоалюминат кальция имеет название «эттрингит».

При твердении портландцемента на воздухе происходит также процесс карбонизации:

Карбонизация происходит с поверхности цементного камня; образующийся труднорастворимый карбонат кальция заполняет собой поры, уплотняя структуру и создавая малопроницаемую пленку.

Все описанные процессы протекают одновременно, оказывая влияние друг на друга. В результате формируется структура цементного камня; он набирает прочность и приобретает прочие эксплуатационные параметры. Структурообразующие процессы интенсивно продолжаются первые 3–7 суток, в дальнейшем они замедляются, однако при эксплуатации во влажных условиях продолжаются в течение еще многих лет.

Последнее изменение этой страницы: 2016-12-30; Нарушение авторского права страницы

Минералогический состав цемента

Химический состав. В отличие от портландцемента, химический состав которого представлен в основном известью и кремнеземом, глиноземистый цемент, кроме оксидов кальция и алюминия, содержит в небольших количествах также оксиды железа, титана, магния и др. Содержание оксидов в глиноземистом цементе характеризуется большими колебаниями, чем в портландцементе, и определяется способом производства клинкера (шлака), а также качеством применяемого сырья. За рубежом путем спекания или плавления в электродуговых печах выпускаются цементы, содержащие Fe203 до 16 мас.

Химический состав цемента — важная характеристика, указывающая на его качество.

Оксид алюминия является основным оксидом, обеспечивающим образование алюминатов кальция. Для получения высокоглиноземистых цементов содержание AI2O3 в смеси должно быть не менее 60%. С увеличением количества оксида алюминия в цементе огнеупорность цемента повышается.

Оксид кальция входит в состав почти всех минералов цемента. Его количество наряду с содержанием AI2O3 обусловливает тот или иной минералогический состав цемента. В глиноземистом цементе содержание СаО составляет 38—42%, в высокоглиноземистом —16—35%. Снижение количества СаО менее 16% предопределяет низкую прочность цементного камня. Содержание СаО в высокоглиноземистом цементе свыше 35% обусловливает образование, наряду с низкоосновными минералами, высокоосновного алюмината кальция состава Ci2A7(12CaO • 7AI2O3).

Количество оксидов железа в цементе обусловливается их содержанием в исходном сырье. Присутствие в цементе 5—10% оксидов железа оказывает благоприятное влияние на процесс минералообразования и на свойства цемента. При количестве Fe203 более 15% качество цемента ухудшается. Предельное содержание Fe203 в глиноземистом цементе не должно превышать 25%.

Однако наличие оксидов железа в высокоглиноземистом цементе вообще нежелательно: в их присутствии снижается огнеупорность цемента, а также ухудшаются технические свойства цементного камня в процессе его службы в составе жаростойкого бетона.

В тепловых агрегатах химической промышленности огнеупорный слой футеровки, соприкасающийся с рабочей средой, должен обладать достаточной устойчивостью к химическому воздействию при высоких температурах газовой среды водорода и оксида углерода.

Восстановительная атмосфера оказывает отрицательное воздействие на футеровку тепловых агрегатов, что выражается в разрушении футеровочных материалов в результате отложения сажистого углерода и изменения в объеме соединений железа, образующихся в результате взаимодействия оксида углерода и водорода с Fe203.

Процесс восстановления оксидов железа твердым углеродом осуществляется в две стадии:
С + С02 = 2СО; Fe203 + 2СО = 2Fe + 2C02.

Последующее взаимодействие Fe с С приводит к образованию РезС. Кристаллизация этого соединения сопровождается значительным увеличением в объеме, приводящем к разрушению структуры материала. Поэтому количественное содержание Fe203 в высокоглиноземистом цементе ограничивается 2%, а в особочистом высокоглиноземистом цементе — 0,2%.

Диоксид кремния также отрицательно влияет на качество цемента вследствие образования негидратирующегося цемента 2СаО • А12Оз • Si02. Более высокой прочностью обладает глиноземистый цемент, в котором содержание Si02 менее 10%. При этом количество СаО должно подбираться в зависимости от содержания SiQ2:

Если СаО в составе цемента меньше 31%, то даже при небольшом содержании Si02 (

6%) прочность цемента будет невысокой.

Отношение А^Оз/ЗЮг является важнейшей характеристикой состава глиноземистого цемента. При А120з/8Ю2 = 2 качество глиноземистого цемента низкое.

В восстановительной среде Si02 взаимодействует с оксидом углерода и углеродом с образованием SiO и Si. Оксид кремния может реагировать с парами воды с образованием гидратов Si(OH)4 или Si(OH)6. Выделение кремния и образование указанных гидратов приводит к внутренним напряжениям в бетоне и разрушению футеровки.

В связи со сказанным количество Si02 в составе высокоглиноземистых цементов ограничивается 5%, а в особочистом высокоглиноземистом цементе — 1%.
Оксид магния понижает температуру плавления и вязкость высокоглиноземистого расплава. По современным представлениям оксид магния в высокоглиноземистых цементах может присутствовать в виде периклаза MgO, акерманита 2СаО • MgO • Si02, или шпинели MgO • AI2O3. При небольшом содержании MgO (до 2—3%) он может войти в твердые растворы с другими минералами.

С увеличением содержания оксида магния в цементе свыше 2% образуется магнезиальная шпинель MgO • AI2O3, что отрицательно сказывается на активности цемента. Однако, ввиду высокой температуры плавления шпинели, равной 2135 °С, такое соединение повышает огнеупорность цемента. Это свойство MgO • AI2O3 используется для получения жаростойких алюми-натно-магнезиальных цементов с огнеупорностью до 1750 °С. В табл. 2.3 показаны свойства этих цементов, выпускаемых в Румынии.

Диоксид титана в высокоглииоземистых цементах присутствует в очень незначительном количестве (менее 0,2%) за исключением цементов, получаемых из шлаков ферротитанового производства.

Рис. 2.1. Диаграмма состояния системы СаО —А12Оз

Высокоглиноземистый цемент алюминотермиче-ского производства содержит 8—12% ТЮг- Диоксид титана в составе цемента образует перовскит СаО • ТЮг — соединение, не подвергающееся гидратации. Количество ТЮг в цементе не должно быть больше 2%.

Читать еще:  Стружечно цементные блоки

Оксиды калия, натрия и содержание Р2О5 (более 1%) отрицательно влияют на качество глиноземистого цемента.

Знание химического состава алюминатного цемента само по себе недостаточно, чтобы судить о свойствах последнего. Важно знать, какие соединения (минералы) образуются из сырьевой смеси, имеющей определенный химический состав, под воздействием термического фактора, т. е. применяемой технологии производства.

Система СаО — АОз. Впервые была изучена Ранкиным и Райтом. В последующих работах предложенная ими фазовая диаграмма изменялась. На рис. 2.1 представлена диаграмма состояния системы СаО —AI2O3 с учетом последних опубликованных данных.

В зависимости от соотношения СаО/АОз в системе СаО — А1203 образуются минералы: ЗСаО • А1203 (С3А), 12СаО • 7А1203 (Ci2A7), СаО • А1203 (СА), СаО • 2А1203 (СА2) и СаО • 6А1203 (СА6).

Трехкалъциевый алюминат СзА является важной составляющей портландцемента, в глиноземистом цементе он не присутствует.

Двенадцатикалъциевый семиалюминат 12СаО • 7AI2O3 (в литературе часто представляется в виде 5СаО • 3AI2O3), по данным многих авторов, имеет две модификации: стабильную форму a = Ci2A7 и нестабильную форму a’ = Ci2A7. Стабильная форма С12А7 характеризуется симметрией, плотностью 2,7 г/см3, твердостью 5 (по шкале Мооса), выкристаллизовывается при 1455 °С. a’ = Ci2A7 отличается тем, что в его элементарной ячейке 2 из 66 атомов кислорода не имеют определенного положения, а распределены статистически.

С12А7 способен поглощать пары воды. Даже при 1400 °С содержание воды в нем составляет 1,4%. Поглощение воды сопровождается изменением параметров решетки, показателя светопреломления двенадцатикальциевого семиалюмината и изменением характера плавления (С12А7, содержащий небольшое количество влаги, принято записывать в виде С12А7Н). В сухом воздухе это соединение плавится инкогруэнтно, разлагаясь при 1374 °С на СА и расплав. В присутствии паров воды С12А7 плавится конгруэнтно при 1391,5 °С. Сложность изучения диаграммы состояния в области состава (мас. ) 50А12Оз + 50СаО обусловливает различное мнение авторов относительно температуры и характера плавления С12А7. Характер диаграммы состояния зависит от парционального давления кислорода. В окислительной атмосфере вплоть до 1460±5 °С С12А7 плавится конгруэнтно. В восстановительной атмосфере температура плавления его равна 1480±5 °С. Решетка С12А7 способна включать ионы фтора и хлора с образованием соединения С12А7САХ2, где X есть ОН, F, C1, при этом параметры элементарной ячейки увеличиваются в следующем порядке: фторид — гидрат — хлорид.

Однокальциевый алюминат СаО • AI2O3 относится к много-клинной сингонии. Его структура состоит из тетраэдров [АЮ4] и атомов кальция, нерегулярно координированных с шестью или семью атомами кислорода. Два атома кальция (Са2 и Саз) окружены шестью атомами кислорода, расположенными октаэд-рально с расстояниями Са—О от 0,231 до 0,271 нм. Третий атом кальция (Cai) окружен девятью атомами кислорода.

Особенность структуры СА состоит в том, что Cai расположен в конце вытянутого октаэдра и имеет связи с кислородом от 0,24 до 0,29 нм. С нерегулярной координацией атомов кальция связывают высокую гидратационную активность СА.

Диалюминат кальция СаО • 2AI2O3 (CA2) — соединение моноклинной сингонии, имеет двуосные положительные кристаллы с малым углом между оптическими осями (20 = 12°). В СА2 атомы алюминия тетраэдрально скоординированы кислородом, причем кислород расположен в углу, общем для трех тетраэдров.

Атомы кальция неправильно скоординированы четырьмя Са —О-связями, размер которых превышает 0,35 нм.

САз гидратируется медленно, при повышенной температуре реакция взаимодействия с водой ускоряется.

Гексаалюминат кальция СаО • 6AI2O3 (САб) имеет гексагональную симметрию. Структура аналогична структуре глинозема. Оптические свойства близки к свойствам корунда, кристаллизуется в виде однородных пластин с отрицательным удлинением. САб является инертным минералом, при взаимодействии с водой не гидратируется, поэтому его наличие в цементе снижает прочность цементного камня.

Минералогический состав глиноземистого цемента, содержащего примесные оксиды. В глиноземистом цементе наряду с основными оксидами СаО и AI2O3 всегда присутствуют оксиды железа, кремния, магния, количество которых зависит от состава применяемых сырьевых материалов, поэтому наряду с алюминатами кальция в цементе содержатся и другие фазы.

Кремнезем связывают оксиды алюминия AI2O3 и кальция СаО в геленит 2СаО • AI2O3 • Si02 (C2AS), может образовывать C2S или тройное соединение ЗСаО • 3AI2O3 • Si02, а оксиды Fe203 и СаО —в алюмоферриты кальция различного состава. Оксид магния с AI2O3 образует шпинель MgO • AI2O3. По данным Паркера, в системе СаО — AI2O3 — Si02 — MgO, составляющей глиноземистый цемент, могут присутствовать следующие минералы:
Са – C6A4MS – С12А7 – C2S, СА – C6A4MS – C2S — C2AS, СА – C6A4MS – C12A7 – MgO, C6A4MS – C12A7 – C2S – MgO, CA – C6A4MS – C?AS – MA, CA – C6A4MS – MA – MgO, C6A4MS – C2S – C2AS – MA, C4A4MS – C2S – MA – MgO.

Присутствующие в глиноземистом цементе в небольшом количестве РегОз и FeO образуют соединения C2F, C6A2F или твердые растворы с СА, С12А7 и СА2-
Геленит 2СаО • AI2O3 • Si02 характеризуется мелилитовой структурой и склонен образовывать многочисленные твердые растворы, плавится при 1590 °С. Он не обладает гидратацион-ной активностью. Однако его твердые растворы проявляют это свойство, что и объясняет противоречивость мнений относительно его скрытой вяжущей способности.

Соединение ЗСаО • 3AI2O3 • Si02 разлагается при 1315 °С на геленит, анорит и шестиалюминат кальция САб, соединения гидратационно неактивные.

Шпинель MgOA^Os — кристаллы кубической сингонии с высоким светопреломлением (N= 1,718), гидратационной активностью не обладает.
Феррит кальция C2F характеризуется орторомбической псевдотригональной структурой. Атомы кальция координированы нерегулярно десятью атомами кислорода, что обусловливает гид-ратационную активность C2F.

Алюмоферриты кальция — это твердые растворы в ряду C2F — C8A3F. В составе глиноземистого цемента присутствует C6A2F. Алюмоферриты кальция обладают более слабой гидратационной активностью, чем алюминаты кальция.

В составе высокоглиноземистого цемента указанные выше оксиды находятся в небольшом количестве (до 2—3 ) в виде твердых растворов с алюминатами кальция, обусловливающих изменение гидратационной активности алюминатов кальция.

С12А7 характеризуется быстрым схватыванием, но невысокой прочностью. Внедрение в его решетку ионов Fe3 + , Ti4+ удлиняет период схватывания и повышает прочность цементного камня.

СА обладает высокой гидратационной активностью. Он способен образовывать твердые растворы с моноферритом и монохромитом кальция. Внедрение Si и Fe в решетку СА повышает его гидратационную активность, однако неясно: является ли это обстоятельство положительным фактором для СА. Исходя из анализа сведений по быстрогидратирующимся, но обусловливающим низкую прочность цементного камня минералами С12А7 и СзА, можно ожидать, что увеличение гидратационной активности СА приведет к напряжениям в структуре цементного камня. Следовательно, общепринятое мнение о необходимости повышения гидратационной активности портландцементных клинкерных минералов путем их модифицирования применительно к моноалюминату кальция может оказаться неверным.

Внедрение в решетку медленно гидратирующегося минерала СА2 трехвалентных ионов (Cr3 + , Mn3 + , Fe3 + ) увеличивает скорость гидратации. При этом СА.2 приобретает высокую прочность и в ранние сроки твердения. Ускоряет скорость гидратации СА2 также наличие в его решетке ионов щелочных металлов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×