Vorota-21.ru

Стройка и Ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Строительные материалы будущего

Строительные материалы будущего

В меняющемся мире мы предъявляем повышенные требования к долговечности, экономичности, экологичности, прочности зданий и сооружений. Созданы самовосстанавливающиеся строительные материалы; материалы, поддерживающие в зданиях комфортный климат и очищающие окружающую среду… В Китае «дома мечты» «печатаются» на 3D-принтерах. Технологии будущего рождаются сегодня. Заглянем в XXII-й век!

Клейтроника

В будущем дом сможет менять форму «по щелчку». Проектирование трансформирующихся объектов изучает клейтроника – наука о новом виде материи. Такая материя будет состоять из катомов – микроскопических компьютеров.

Метаматериалы

Мечты фантастов о невидимости и голограммах осуществят метаматериалы. Их характеристики будут определяться не составом, а искусственно созданной структурой, что позволит получать материалы с ошеломляющими свойствами. В частности, с отрицательным коэффициентом преломления, отвечающим за видимость. Шапки-невидимки и здания-невидимки – возможны.

Если клейтроника и метаматериалы – пока еще будущее строительства, то многие материалы, еще недавно казавшиеся фантастикой, – уже настоящее.

Наногель

Наногель также называют аэрогелем или «жидким дымом». Невероятно, но этот «дым» был изобретен еще в 1931 году. Американский химик Стивен Кистлер создал сверхпрочный материал, на 97% состоящий из воздуха. Кубик из наногеля размером с игральную кость по площади своих внутренних фрактальных структур превосходит футбольное поле. Благодаря этому стена из наногеля защитит от потока огня и действия низких температур. При этом плотность наногеля всего 3 мг/см³.

Дома из грибов и водорослей

Удивительно, но грибы и водоросли – прекрасные строительные материалы. Экологичные и прочные. И первый «грибной» дом уже построен. Компактный, но вполне пригодный для жизни. Его возвела компания Ecovative, для которой тема использования мицелия в строительстве является основной. У грибов масса достоинств, помимо природности. Они обладают высокими огнеупорными и изоляционными свойствами, нетоксичны и 100%-но биоразлагаемы. Грибной изоляционный материал распыляется в виде пены и, прорастая, заполняет щели и углубления.

Водоросли также активно применяют в строительстве уже сегодня. Как для создания автономной системы энергообеспечения, так и для производства утеплителей. Такие технологии значительно сократят затраты на строительство и эксплуатацию зданий. В Гамбурге построен дом с живыми водорослями в фасаде, создающими комфортный микроклимат и служащими источником энергии.

Самовосстанавливающиеся материалы

Проблема долговечности конструкций натолкнула технологов на идею самовосстанавливающихся материалов. Так, в Нидерландах придумали цемент с бактериями и «кормом» для них в составе. Бактерии перерабатывают предложенный «корм» в прочный карбонат кальция, заполняющий повреждения. Используя подобный цемент, производят «живой» бетон. Так что создание практически вечных зданий – вопрос ближайшего будущего.

Прозрачный бетон

Прозрачный бетон также производят уже сегодня – на основе бетонной смеси и оптико-волоконных нитей. К сожалению, это пока еще очень дорогое удовольствие. Но развитие технологии производства удешевят этот интересный материал. Венгерский архитектор Арон Лосконши – изобретатель прозрачного бетона – мечтал о зданиях, которые будут казаться невесомыми. Но пока его изобретение применяется для других целей. Например, в США из прозрачного бетона строят ограждающие сооружения для правительственных зданий. А в Европе из него возводят элитные коттеджи. Рационально использовать новый материал и для создания естественного освещения затемненных комнат (ванных, коридоров, кладовых). По прочности прозрачный бетон не уступает обычному.

Гибкий бетон

Даже небольшая доля оптоволокна в составе меняет свойства бетона. Так был получен гибкий бетон. Попробуйте погнуть обычный бетон! Увы, этот прочный материал ломок при изгибе. А благодаря оптоволокну бетон обретает гибкость. Это открывает новые перспективы в строительстве.

Биодинамический бетон

В России биодинамический бетон пока еще не используется. А в Милане из него построено здание Экспоцентра. Благодаря уникальному составу биодинамический бетон может очищать окружающую среду. Вредные примеси из воздуха превращаются в инертные соли. Проблема смога решена!

Жидкий гранит

Созданный из вторичного сырья, этот материал идеально отвечает задачам сохранения окружающей среды. Жидкий гранит лёгок, прочен, жаростоек (выдерживает температуру до 1100◦С) и способен полностью заменить цемент в строительстве. Даже живя рядом с заводом ЖБИ, вы не будете дышать цементной пылью.

Самоочищающиеся материалы

Придание поверхностям грязеотталкивающих свойств может достигаться введением специальных добавок в бетон. Активатором добавок выступают солнечные лучи: на стенах не образуется плесень. А нанотехнологии позволят модифицировать строительные материалы так, что грязь будет скатываться с поверхностей.

Стеклянная черепица для крыши

Новшество шведской фирмы SolTech создано с целью повышения энергоэффективности зданий. Проникающий через прозрачную черепицу солнечный свет нагревает воду в системах энергообеспечения. Счёт за электричество уменьшается в разы.

«Живое» стекло

Материал, «думающий» о качестве воздуха, создали архитекторы Су Янг и Дэвид Бенжамин. «Живое» стекло позаботится о вас лучше комнатных растений. При пониженном качестве воздуха откроются специальные прорези-жалюзи. И ваша квартира наполнится чистым воздухом!

Металлическая пена

Металлическую пену получают добавлением пенообразователя в расплавленный алюминий. Как и наногель, такой материал на 70-95% состоит из пустоты, что даёт выгодное соотношение прочности и лёгкости. Благодаря этому металлическая пена применима для космического строительства. А сверхлёгкие виды пены подходят для возведения плавучих сооружений.

3D-печать

Дома, «напечатанные» с помощью гигантского 3D-принтера, – реальность сегодняшнего дня. В качестве «чернил» используется микс вторичного сырья, стали и цемента. Слой за слоем принтер «печатает» дом. Придет время – и 3D-печать станет привычной, а стройплощадки – чистыми и комфортными.

Список инновационных строительных материалов и технологий постоянно пополняется, создавая новую картину процессов и возможностей по преобразованию пространства.

Новые стройматериалы и технологии: перспективы будущего

Главная страница » Новые стройматериалы и технологии: перспективы будущего

Прогнозы появления новых строительных материалов обычно строятся на факторах потенциального роста промышленности, экономической эффективности, инноваций (удивительных новых открытий). Прогнозированием занимаются ежегодно, анализируя появление новинок на условной строительной площадке. Так вот, прогноз на инновации и новые стройматериалы 2018 обещает удивить технологиями, которые сочетают в себе полный спектр отмеченных критериев.

Новые стройматериалы для индустрии

Тенденции рынка новых стройматериалов и технологий: цемент, древесина, а также возобновляемые источники энергии. Всё это окажет существенное влияние на сферы проектирования и строительства для года наступающего (2018) и в ближайшей перспективе. Посмотрим, что есть уже сейчас в багажнике строительных инноваций.

Программируемый цемент

Будучи веществом, потребляющим значительное количество воды, бетон продолжает оставаться ведущим направлением для исследований и разработок новых строительных материалов.

Несмотря на повсеместное и традиционное применение, бетон по-прежнему выглядит своего рода загадочным стройматериалом. Поэтому здесь ожидаются открытия, подобные недавним, сделанным в 2017 году, когда были обнаружены интересные факты.

Исследования стройматериалов дают новую информацию о связывающем, что используется в строительстве. Частицами цемента можно манипулировать — формировать различные формы, например, куб

Выяснилось, что цемент, как часть содержимого структуры бетона, с течением времени карбонизирует углекислый газ. Это свойство материала в конечном итоге способствует переопределению экологически чистой площади бетона.

Подобные результаты исследований лишний раз подчеркивают необходимость более чёткого понимания формирования структуры новых строительных материалов на молекулярном уровне.

Ещё одним недавним примером отметилась многопрофильная лаборатория стройматериалов университета Райса. Тамошние ученые обнаружили ранее неизвестные свойства частиц цемента, подвергшегося гидратации (CSH: кальций-силикат-гидратный цемент).

Читать еще:  Материал для стен гаража

Альтернативные связующие звенья для повышения устойчивости используются в составе цементов нового вида, предназначенных для специалистов строй-индустрии

Согласно утверждениям исследователей, полученные сведения планируется использовать для «программирования» частиц материала строго контролируемым способом. По сути, речь идёт о новом стройматериале — программируемом цементе.

Значимый прогресс этой работы отмечен первым шагом в управлении кинетикой цемента для получения желаемых строительных форм. По сути, учёные университета Райса открыли технологию контроля морфологии и размера основных строительных блоков CSH.

Такие блоки самостоятельно могли бы организовываться в микроструктуры с большей плотностью упаковки по сравнению с обычными аморфными микроструктурами CSH.

Эта повышенная плотность должна привести к увеличению прочности материала и долговечности, улучшению химической стойкости и защите арматурной стали внутри бетона.

Кросс-клеенная древесина

Помимо бетона, не менее популярным строительным материалом выступает древесина. В настоящее время строительная отрасль делает ставку на массивную древесину, основанную на разработке новых методов.

Массивная древесина применяется для строительства высотных зданий, с использованием быстро возобновляемых, окаймлённых карбоном стройматериалов, которые превосходят бетон и сталь в экологическом отношении.

Так называемая кросс-ламинированная древесина быстро набирает популярность на строительных площадках. Массивные панели на основе модифицированного стройматериала из лиственных пород

В рамках растущей области производства пиломатериалов, основанных на хвойной древесной структуре, появился неожиданный конкурент: пиломатериалы CLT (Cross Laminated Timber – Перекрёстно Ламинированная Древесина), сделанные на основе дерева лиственных пород.

Лондонская международная студия архитекторов и дизайнеров (dRMM Architects) в сотрудничестве с глобальной инженерной фирмой ARUP и американским Советом по экспорту лиственных пород, разработали CLT-панель на основе быстрорастущего североамериканского дерева «Харпуллия висячая» (Tulipwood).

Структура асфальтного покрытия подобного рода содержит светодиодную подсветку для автономного освещения дорожного полотна и нагревательные элементы, способствующие быстрому снеготаянию.

Похожий пример: энергетическая накопительная система дорожного полотна «Wattway», придуманного французской строительной фирмой «Colas».

Здесь под автомобиль используется лишь 10% покрытия, тогда как остальная часть генерирует электрический ток. Между тем энергетики, полученной с 20 м 2 открытой поверхности полотна «Wattway», с лихвой хватает для питания типичного частного дома.

Wattway — запатентованная французская инновация. Результат 5-летних исследований, проведенных фирмой Colas, мировым лидером в области транспортной инфраструктуры

Используется гибкий композитный материал толщиной всего в несколько миллиметров. Проект «Wattway» наглядно демонстрирует высокоструктурированную энергетическую дорожную поверхность.

Пока что проекту недостаёт более продвинутых возможностей технологии энергетических дорог. Тем не менее, «Wattway» можно попросту разложить на поверхности обычного тротуара. Конструкция позволяет учитывать внутреннюю тепловую дилатацию.

Электроэнергетический текстиль

Продолжая тему энергетики, нельзя не отметить ещё одну интересную область — интеграция возобновляемых источников энергии в тканях. Текстиль, способный накапливать электроэнергию, давно является целью дизайнеров и производителей современной одежды.

Однако ограниченные материальные характеристики существующей электроники — жесткие компоненты, провода и хрупкие соединения – всё это затрудняет интеграцию в текстиль, по умолчанию имеющий гибкую мягкую структуру.

Такой выглядит ткань, способная заряжаться энергией от лёгкого прикосновения и сохранять накопленный ток внутри собственной структуры

Но ученые технологического института Джорджии, кажется, смогли найти выход из трудного положения. Там объявили о создании ткани, которая собирает энергию солнечных лучей и кинетических источников в результате потенциального трения, имеющего место в случае контакта с другими волокнами.

Инженерами текстильщиками уже сейчас сделана машина, создающая принципиально новую ткань века. Сырьём для производства энергетической ткани являются солнечные микро-панели на основе полимерных и трибоэлектрических волокон. Эта база позволяет генерировать энергию в результате фрикционного контакта с другими материалами.

Энергетическая ткань получается:

По сути, структура энерготекстиля состоит из недорогих доступных и главное – экологически чистых компонентов. Найдено редкое сочетание полезных качеств, которые способны кардинальным образом преобразовать привычные предметы одежды.

Строительно-интегрированные биореакторы

Современные городские здания пока что редко используются для выращивания биомассы. Поэтому строительно-интегрированный биореактор остаётся для строительного рынка слабо растущей экспериментальной тенденцией.

Пример агро-городской экосистемы — постройка, собравшая в своём проекте весь потенциал, необходимый для решения задач недостатка энергии и продовольствия

Между тем микроводоросли — широко распространенные фотосинтезирующие организмы, составляющие основу водной пищевой цепи, рассматриваются как ресурс с неограниченным потенциалом для решения проблемы нехватки продовольствия и энергии.

Заинтересовавшаяся этим направлением, датская архитектурная фирма «Een Til Een», разработала первый в мире биологический дом с использованием новых биосодержащих стройматериалов и цифровых технологий.

Построенный в ноябре 2017 года, первый биологический дом нашёл пристанище в эко-парке Biotope, что в Миддельфарте (Дания). Проект наглядно показывает: имея под руками нетрадиционные строительные материалы:

  • стебли томатов,
  • соевые бобы,
  • водоросли,
  • лен и солому,

совсем несложно построить дом из альтернативных стройматериалов.

Зачастую фермерская практика указывает на массовое уничтожение отмеченных продуктов. Эти побочные продукты фермерских хозяйств, как правило, сжигаются с целью получения тепловой энергии.

Однако их сжигание вызывает загрязнение атмосферы и приводит к необратимому экологическому воздействию на здоровье человека и на экосистему.

Проект биологически чистого жилого дома, выстроенного исключительно из остаточного сырья фермерских хозяйств. Источником энергии применяются солнечные панели

А проблема решается просто. Биологическое жилище площадью 170 м 2 , оснащенное солнечным генератором энергии – хороший пример.

Солнечные панели генерируют энергию, избыток которой сохраняется аккумуляторами новой конструкции – более совершенной по сравнению с теми, что используются сейчас.

По данным компании, внешний каркас Биологической хижины (Biological House), построен на основе стального винтового свайного фундамента.

Каркас покрыт модифицированной древесиной «Кебони» (Kebony), изготовленной норвежцами. «Кебони» — пропитанная особым способом древесина лиственных пород, долговечная и прочная.

Ещё про новые стройматериалы настоящего и будущего

10 невероятных материалов будущего (12 фото)

Какими будут материалы будущего? Сегодня уже разработаны и ведутся разработки материалов, о которых люди прошлого могли только мечтать. Они будут дешевле, прочнее, лучше, качественнее во всех отношениях. Применений им будет огромное количество. Давайте перевернем страничку сегодняшнего дня и познакомимся с материалами, которые на самом деле могут перевернуть ваши представления о металлах и других материалах.

Читать еще:  Ремонт ванной стоимость материалов

1. Аэрогель

Этот крошечный блок прозрачного аэрогеля поддерживает кирпич весом 2,5 кг. Плотность аэрогеля — 3 мг/см³.

Аэрогелю отведено 15 позиций в Книге рекордов Гиннесса — больше, чем любому другому материалу. Иногда называемый «замороженным дымом» аэрогель производится в процессе сверхкритической сушки жидких гелей из алюминия, хрома, оксида олова или углерода. На 99,8 % аэрогель состоит из пустого пространства, что делает его полупрозрачным. Аэрогель фантастически изолирует — если у вас щит из аэрогеля, он защитит вас от потока огня. Причем так же защитит и от холода. Из него можно было бы построить теплый купол на Луне. У аэрогелей невероятная площадь поверхности внутренних фрактальных структур — кубик аэрогеля с гранью в один дюйм обладает внутренней площадью, эквивалентной футбольному полю. Несмотря на низкую плотность, аэрогель рассматривался в качестве компонента военной брони из-за своих изолирующих свойств.

2. Углеродные нанотрубки

Углеродные нанотрубки — это длинные цепи углерода, удерживаемые сильнейшей связью во всей химии, sp2, которая сильнее даже sp3, удерживающей алмаз. Углеродные нанотрубки обладают многочисленными прекрасными свойствами с точки зрения физики, с легкостью проводят электроны и настолько прочны, что это единственное вещество, в теории пригодное для строительства космического лифта. Удельная прочность углеродных нанотрубок — 48,000 кН·м/кг, такой прочностью не может похвастать даже высокоуглеродистая сталь (154 кН·м/кг). В триста раз прочнее стали. Из такого материала можно строить башни в сотни километров высотой.

3. Метаматериалы

«Метаматериалом» можно назвать любой материал, который приобретает свои свойства от структуры, а не состава. Метаматериалы использовались для создания микроволновых плащей-невидимок, двумерных плащей-невидимок и материалов с необычными оптическими свойствами. Некоторые метаматериалы обладают отрицательным индексом преломления, оптической величиной, которая позволяет создавать «суперлинзы», с помощью которых можно разглядеть элементы, которые меньше, чем длина световой волны. Эта технология называется субволновая визуализация. Метаматериалы планируют использовать для создания совершенных голограмм на 2D-дисплеях. Они были бы настолько совершенны, что если бы вы смотрели на экран с расстояния 10 сантиметров, даже не определили бы, что это голограмма.

4. Доступные алмазы

Мы давно стали использовать толстые слои алмазов в различных машинах, тем самым приблизив время, когда алмазы будут использоваться повсеместно. Алмаз — идеальный строительный материал. Он прочный, легкий, сделан из легкодоступного углерода, практически полностью теплопроводен и обладает одной из самых высоких температур кипения и плавления среди всех материалов. Вводя микропримеси, вы можете сделать алмаз практически любого цвета. Представьте истребитель, в двигателе которого сотни тысяч движущихся частей сделаны из алмаза. Такой аппарат был бы во много раз мощнее, чем лучшие самолеты сегодняшнего дня.

5. Доступные фуллерены

Алмазы прочны, но агрегированные алмазные наностержни (так называемые аморфные фуллерены) прочнее. Наноразмерные структуры фуллеренов придают им красивый переливающийся вид. Фуллерены могут быть существенно прочнее алмазов, но их производство требует больше энергии. После «алмазного века» мы вполне можем попасть в «век фуллеренов», а наши технологии будут более сложными.

6. Аморфные металлы

Аморфные металлы, также называемые металлическими стеклами, состоят из металла с неупорядоченной атомной структурой. Они могут быть в два раза прочнее стали. Из-за неупорядоченной структуры они могут рассеивать энергию удара более эффективно, чем металлические кристаллы, у которых есть слабые места. Аморфные металлы создаются в процессе быстрого охлаждения расплавленного металла до того, как он сформирует кристаллическую решетку. Аморфные металлы могут стать следующим поколением военной брони до того, как сменятся алмазоидными материалами к середине века. Если говорить об экологии, аморфные металлы обладают электронными свойствами, которые на 40 % увеличивают эффективность энергосетей, экономя нам тысячи тонн выбросов ископаемого топлива.

7. Сверхсплавы

Сверхсплав — это общий термин для металла, который может работать при очень высоких температурах (до 1100 °C). Их с удовольствием используют в сверхгорячих областях турбин реактивных двигателей. Они также используются и в более сложных конструкциях. Когда мы будем летать по небу в гиперзвуковых самолетах, нам придется благодарить сверхсплавы.

8. Металлическая пена

Металлическая пена — это то, что вы получаете, когда добавляете пенообразователь, порошкообразный гидрид титана, в расплавленный алюминий, а потом даете ему остыть. В результате получается крайне прочная субстанция, относительно легкая, с 75-95 % пустого пространства. Из-за своего благоприятного соотношения прочности к весу металлические пены были предложены в качестве строительного материала для космических колоний. Некоторые формы металлической пены настолько легкие, что плавают на воде, что делает их отличным средством для строительства плавучих городов.

9. Прозрачный алюминий

Прозрачный алюминий в три раза прочнее стали и прозрачен. Количество применений такому материалу воистину огромно. Представьте себе целый небоскреб или аркологию, состоящую из прозрачной стали. Горизонты будущего могут выглядеть как ряды плавающих черных точек (отдельные номера), а не монолиты, как сегодня. Огромная космическая станция, выполненная из прозрачного оксида алюминия, будет проплывать над Землей не страшной черной точкой, а незаметным спутником. А как насчет прозрачных мечей?

10. Электронная ткань

Если мы встретимся за чашечкой кофе в 2020 году, я скорее всего буду одет в электронную одежду. Зачем носить с собой электронные гаджеты, которые легко потерять, если можно просто носить с собой компьютеры? В настоящее время ведется разработка альтернативных методов ношения компьютеров, и если в ближайшее время мы увидим разве что очки и часы, скоро схемы будут вшиты непосредственно в то, что мы надеваем. Ведь замечательно говорить с кем-то по телефону, просто поднося руку к уху. Возможности электронной одежды воистину безграничны.

Строительные материалы будущего изменят оконную индустрию

Дата размещения: 20 февраля 2018
>>Допускается републикация статьи с индексируемой ссылкой — «Источник: ELport.ru»

Интерактивные фасады, вакуумная изоляция и аэрогели вместо традиционных изоляционных материалов, здания, покрытые термо-биметаллами, самовосстанавливающиеся пластики – этим технологиям предсказывают большое будущее. Предлагаем рассмотреть, какие материалы и технологии окажут влияние на будущее строительной и, в частности, оконной индустрии.

С появлением прорывных технологий кажется, что классическая, универсальная витрувианская триада немного устарела. Красоты, долговечности, удобства использования – уже недостаточно для архитектуры или строительства. Это относится к функциональности, которая должна отвечать требованиям не только пользователя объекта, но и окружающей среды. Здания должны взаимодействовать с ней, быть неотъемлемой частью экосистемы.

Инженерия материалов 4.0

Изменения в инженерии и материаловедении происходят очень быстро, и общий знаменатель этих изменений – это не только функциональность, но и уважение к окружающей среде, как при производстве материалов, так и их использовании. Это создаёт баланс между потребностями и возможностями, позволяет снять ограничения. Если с одной стороны, в отношении дизайнеров и инженеров предъявляются всё более высокие стандарты и требования, то с другой стороны, материалы и технологии, которые они имеют в своем распоряжении, предлагают все больше возможностей их реализации.

Эксперты считают, что инженерия материалов должна быть нацелена на определенный тип сложности свойств и стремиться улучшить параметры материалов, в зависимости от их основного применения. Дополнительный элемент инновационности строительных материалов, выходящий за пределы их технических характеристик, представляет собой, например, возможность рециклинга и повторное изготовление материалов с одинаково хорошими параметрами. Развитие в строительном секторе принципа замкнутого цикла – это решение проблемы нехватки ресурсов и бесчисленного количества отходов.

Читать еще:  Теплоизоляционный материал для стен

Предстоящая четвертая промышленная революция (Индустрия 4.0) приведет к ряду изменений, связанных, среди прочего, с внедрением новых технологий моделирования, проектирования и производства, которые будут иметь различные последствия для строительной и оконной отрасли. Технологии будущего, такие как аддитивная печать (3D-печать), робототехника, использование виртуальной реальности, расширенная реальность, позволят повысить гибкость и персонализацию решений. Также заметно желание разработчиков повысить их сложность, эффективность и качество, одновременно снижая издержки производства.

«Умное» строительство

Быстрорастущая отрасль инженерии – это материалы, которые можно охарактеризовать как «умные», способные разумно, мгновенно и предсказуемо реагировать на изменения в окружающей среде. Они изменяют свойства (цвет или прозрачность) под воздействием импульса: теплового, химического, механического, электрического. Эксперты считают, что интерактивные материалы, способные реагировать на изменения, адаптирующиеся к окружающей среде, являются материалами будущего.

Смарт-продукты включают в основном изделия из стекла, но также на строительный подиум выходят термо-биметаллы, которые могут изменять форму, например, изгибаться под воздействием солнечного излучения. В настоящее время ведутся исследования на первых экранах из этого материала. Ими управляет американский архитектор Дорис Ким Сун (Doris Kim Sung). Специалисты в один голос говорят, что куда большим вызовом является не обогрев зданий, а их защите от перегрева. Все виды солнцезащитных систем, интерактивные фасады необходимы для снижения затрат энергии на кондиционирование зданий. Вдохновленная свойствами кожи человека, которая является естественным терморегулятором, предлагает покрывать здания именно такой «кожей», изготовленной из термических биметаллических покрытий. Данное решение может заменить традиционные системы защиты от солнца, а возможно и системы вентиляции и кондиционирования.

Абсолютным прорывом в строительстве вскоре могут стать материалы с изменением фазы (phase change materials). Это вещества, которые накапливают и выделяют большое количество энергии. Они классифицируются как скрытые тепловые единицы (LHS). Здание, отделанное таким материалом, может спонтанно накапливать и хранить энергию в солнечные дни и отдавать ее в пасмурную погоду. Эти материалы также позволяют использовать тепло, генерируемое внутри здания (от людей, устройств, воздуха, нагреваемого солнечной энергией, поступающей через оконное стекло).

Многое будет изменяться в теплоизоляции зданий. Будущее, как утверждают эксперты, должно принадлежать вакуумной изоляции – по функционалу слой в 1 см заменяет 20-сантиметровый пенополистирол. Но для эффективной работы необходим специальный метод монтажа, а также нельзя нарушать целостность такого покрытия в процессе эксплуатации.

Очень интересным материалом является аэрогель, который имеет в два с половиной раза меньшую теплопроводность λ, чем используемые в настоящее время изоляционные материалы. Это самое легкое твердое вещество в мире, со структурой мыльных пузырей, на 99% состоит из воздуха. Уже есть практика использования данного вещества в окнах из ПВХ и алюминия. К сожалению, на текущий момент, слишком высокая цена мешает его широкому распространению.

Идеи, взятые из природы

Бионика – это наука на границе биологии и технических наук. Её развитие может принести впечатляющие технологические решения в строительную индустрию. Мир живых организмов гораздо более совершенен, чем наш, в некоторых отношениях он обладает удивительными способностями, которые людям нужно только научиться использовать.

Взять, к примеру, роговицу глаз мотыльков с сильными антиотражающими свойствами, которые вдохновляют ученых использовать их во многих областях. Для строительной отрасли на этой основе было разработано антибликовое и термостойкое стекло, которое дополнительно обладает способностью к самоочистке. Также ведется работа над более прочными и эффективными солнечными батареями.

Устройство дыхательной системы кузнечика, обеспечивающее эффективный газообмен, также является областью исследований для ученых. Перемещение этой системы в архитектуру позволило бы создать вентиляцию зданий через стены без каких-либо затрат энергии.

Бактерии на службе строительной отрасли

Есть много указаний на то, что работа над адаптацией к реальным инженерным приложениям «живого» бетона будет успешно завершена, и это станет прорывом в строительстве. Оказалось, что группа чрезвычайно стойких бактерий осаждает тот же тип кальцита, который является компонентом бетона. Бактерии, помещенные в бетон вместе с их пищей (определённого сорта крахмалом), могут находиться в состоянии покоя в течение многих лет. Как только появляются трещины, они оживают, размножаются и выделяют минеральный кальцит. Он связывается с бетоном, создает минеральную структуру, закрывает трещину и дефекты бетона. Вот так, используя бактерии, можно создать «живой», самовосстанавливающийся бетон.

В использовании бактерий, кроме этого, ученые видят надежду на решение проблемы сложных отходов (также в строительстве), полистирола или ПЭТ. Бактерии, эволюционируя, научились из пластиковых отходов получить еду. И если разложение этого типа материала, как подсчитали учёные, может длиться сотни лет, то бактерии делают это всего за 6 недель.

Примеры таких феноменов природы можно размножить, а открытие новых, несомненно, станет движущей силой инженерии материалов и развития новых технологий. Расшифровка некоторых сложностей микрокосмики и возможность реализации в более крупном масштабе – одна из основных задач современной инженерии, в том числе тех, которые используются в строительстве, считают специалисты.

Оконная отрасль на пороге трансформации

Интеллектуальные и экологические материалы быстро осваивают новые ниши, и оконная отрасль здесь не исключение. Дальнейшее развитие нано- и биотехнологий может обеспечить лучшее использование солнечной энергии в зданиях с помощью эффективных и эстетичных фотогальванических панелей, а фотокаталитические материалы благодаря живым микроорганизмам улучшат качество воздухообмена и светопропускания.

Конечно, в статье названы далеко не все материалы и технологии, которые уже сегодня выступают движущей силой строительного рынка. Безусловно, ещё будут появляться инновационные, сейчас совершенно неизвестные решения, что со временем будет способствовать созданию новой типологии, функции и эстетики оконных конструкций.

Организаторы и эксперты Премии «Оконная компания года» ожидают увидеть постоянную трансформацию и большой технологический прорыв индустрии светопрозрачных конструкций в ежегодном марафоне лучших поставщиков решений на российский рынок. Весной 2018 года стартует третий сезон проекта WinAwards Russia – используйте уникальные возможности этой площадки для продвижения прогрессивных идей своей компании!

О Премии «Оконная компания года/WinAwards Russia»

Российская профессиональная Премия «Оконная компания года/WinAwards Russia» в 2017 году проводилась второй раз.

Цель Премии – показать возможности и направления развития отрасли светопрозрачных конструкций в России. Определить и популяризировать в обществе лучшие компании, продукты, услуги на рынке СПК. Стимулировать индустрию к качественному профессиональному росту, надежности и ответственности перед потребителями.

Учредитель и организатор: интернет-портал tybet.ru.

Официальные партнеры Премии: «Национальный оконный союз», НИИСФ РАСН, НИУ «Высшая школа экономики», ФИОП (группа «РОСНАНО»), «Межрегиональный институт окна», НП «Экологический Союз» (маркировка «Листок жизни»). Отраслевой партнер – Международный форум производителей СПК STiS. При поддержке лидеров рынка комплектующих для окон SIEGENIA, WINKHAUS, profine RUS, Deceuninck и IVAPER.

Официальный сайт Премии http://winawards.ru.

Пресс-центр – Лилия Калашникова press(а)winawards.ru

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×