Vorota-21.ru

Стройка и Ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Композитный материал что это

Что такое композитные материалы

Что такое композит

Композиты — группа материалов, состоящих из нескольких компонентов, один из которых выполняет армирующую функцию, а второй связующую.

Например, железобетон — это вид композита. В этом соединении железо выполняет армирующую функцию, а бетон — связующую. Композит, который используют в судостроении, называется стеклопластиком или углепластиком. Базово он состоит из стеклоткани или углеткани и смолы.

Особенность композитов, что готовый материал обладает гораздо большей прочностью и жесткостью, чем его ингредиенты по отдельности. А значит готовое изделие весит меньше. В судостроении важно сделать корпус максимально легким — чем он легче, тем более мореходная, быстрая и экономичная получается лодка. Поэтому композитные материалы как нельзя лучше подходят для этой задачи.

Из чего состоит композит

Композит, из которого строят суда, базово состоит из 4-х типов материалов:

  • связующее вещество (смола)
  • армирующее вещество (ткань)
  • средний слой (наполнитель для сэндвича: пена или сотовый материал)
  • поверхностный слой (краска/гелькоут)

Если объяснять упрощенно, то композит производят следующим образом — ткань пропитывается жидкой смолой с отвердителем, высыхает и отвердевает. Самые простые композитные конструкции состоят просто из нескольких слоев ткани и смолы. Например, так строят корпуса детских парусных яхт Оптимист.

Для более сложных и больших конструкций, например, прогулочных катеров, используют композитный сэндвич. В композитном сэндвиче появляется средний слой — пена. Она закладывается между двумя армирующими слоями ткани, все вместе пропитывается смолой и в результате получается монолитный материал обладающий еще большей поверхностной прочностью, но при этом все еще достаточно легкий.

Разберем отдельно каждый тип материалов.

Смола

Смола — связующую вещество, которое пропитывает все слои композита и превращает их в готовую монолитную деталь. В судостроении используется 3 типа смолы:

  • эпоксидная
  • эпоксивинилэфирная
  • полиэфирная

Эпоксидная смола — самая прочная и дорогая. За счет повышенной прочности для изготовления детали ее требуется меньше, чем полиэфирной смолы, а значит сама деталь получается легче. Не содержит ядовитого вещества — стирола. Корпус лодки из эпоксидной смолы может эксплуатироваться без ремонта до 30 лет подряд.

Эпоксивинилэфирная — это соединение на основе эпоксидной смолы. В отличие от эпоксидной смолы оно уже содержит стирол, но в меньших количествах, чем полиэфирная смола. По цене и прочности это промежуточный вариант между эпоксидной и полиэфирной смолой.

Полиэфирная — дешевая и наименее прочная, содержит стирол. Изделия из нее получается тяжелее и со временем начинают впитывать воду. Полиэфирная смола более хрупкая, поэтому корпуса из нее со временем нуждаются в ремонте. Корпус из полиэфирной смолы в среднем служит до 20 лет.

Ткань

Ткань в судостроении выполняет роль армирующего вещества — с помощью нее изделию задается форма, она берет на себя нагрузку на скручивание. Ткань дает конструкции прочность на растяжение или сжатие.

В судостроении используется три типа ткани:

  • стекломат
  • стеклоткань
  • углеткань

Стекломат — рубленные спресованные волокна стекловолокна. Стекломат максимально гибкий и подвижный, ему можно задать любую форму или изгиб. Но при этом это наименее прочный вид ткани, у него нет устойчивости к скручиванием и разрывам — если потянуть сухую ткань в разные стороны она просто расползется.

Стеклоткань — стекловолокна, которые сплетено таким образом, что у ткани есть конкретное направление. Виды плетения бывают разными и от них зависит под каким углом ткань абсолютно устойчива на растяжение. Грамотный проект яхты учитывает особенности направления ткани и четко регламентирует какой тип плетения надо использовать на конкретных участках конструкции. Благодаря сочетанию разных типов плетения получаются максимально прочные детали, устойчивые к любым видам нагрузок.

Углеткань — тоже самое, что стеклоткань, только из углеволокна. У нее тоже есть разные типы плетения и направления. Углеволокно примерно в 2 раза прочнее, чем стекловолокно — точное соотношение зависит от типа плетения. Но стоит в 20 раз дороже.

Если упрощенно, то благодаря повышенной прочности на одну и ту же деталь углеволокна уходит в 2 раза меньше, чем стекловолокна. В результате деталь из углеволокна получается примерно в 2 раза легче. Готовый материал изделия из углепластика называется карбон. Полностью из карбона строят самые дорогие и быстрые гоночные яхты в мире.

Средний слой

Средний слой нужен, чтобы добавить расстояния между несколькими армирующими слоями ткани, и тем самым повысить поверхностную плотность изделия. Дело в том, что сама по себе ткань дает нужную прочность только на скручивание или сжатие, но не дает необходимой поверхностной прочности — деталь получается слишком тонкой.

В теории, увеличить толщину и соответственно поверхностную прочность можно просто наложив больше слоев стеклоткани, но тогда мы получим слишком большой вес, и при этом избыточную прочность к скручивающим нагрузкам.

Поэтому, чтобы соблюсти баланс между весом, поверхностной прочностью и устойчивостью к скручиванию, используют принцип сэндвича и прокладывают армирующие слои легким наполнителем. Чаще всего в производстве используют следующие типы наполнителя:

  • ПХВ
  • Coremat

ПХВ — пенополивинилхлорид. Очень легкое, но при этом достаточно прочное соединение. В цифрах плотность этого материала — от 80 до 120 кг на 1 кубический метр. Еще один важный фактор — эта пена не впитывает в себя смолу, а значит не набирает лишний вес. В ней делают специальная перфорация, чтобы смола пропитала все слои и соединила их в одну монолитное изделие.

Coremat — состав, сделанный на основе тех же соединений, что и стекловолокно. Стоит значительно дешевле, чем ПХВ, но итоговое изделие получается тяжелее. По своему принципу он похож на стекломат, но весит меньше и впитывает меньше смолы. Поэтому если сравнивать, что лучше — просто накатать больше ткани или использовать coremat, выгоднее выбрать coremat.

Если нужен максимально легкий и быстрый корпус, лучше использовать ПХВ. Если нужно получить дешевую, но тихоходную лодку — выгоднее использовать coremat.

Поверхностный слой

Поверхностный слой — внешний слой корпуса, который дает цвет и защищает от поверхностных повреждений. Обычно его делают из гелькоута или полиуретановой краски.

Гелькоут — соединение по составу очень похожее на смолу, оно тоже может быть на полиэфирной, эпоксидной или эпоксивинилэфирной основе. Если упрощенно, это густая смола с конкретным цветом. Гелькоут достаточно устойчив к поверхностным воздействиям. Закладывается в матрицу, как один из слоев монолитного корпуса.

Полиуретановая краска — тип краски, который хорошо защищает от внешних воздействий. Краска предлагает большой выбор цветов и стоит дороже. Наносится сверху на готовое изделие.

Как строят корпус

Чтобы построить яхту из композита, нужна матрица — форма, в которую будут выкладываться слои ткани и смолы, чтобы в итоге получился корпус. Можно сделать одну матрицу для всей нижней части корпуса — тогда он будет полностью монолитный. Можно сделать несколько маленьких матриц и производить детали по отдельности, а потом вручную собирать их в одно целое — такой метод используют при производстве больших корпусов длинной от 20 метров.

В любом варианте укладывать слои и добиваться отвердевания можно разными способами. Вот основные методики изготовления готового корпуса:

  • ручная формовка
  • ручная формовка + вакуумное обжатие
  • вакуумная инфузия
  • запекание (prepeg)

Ручная формовка — самый трудоемкий и наименее технологичный метод. Рабочие вручную выкладывают ткань в матрицу и пропитывают ее смолой с помощью валика. Для упрощения работы есть специальный инструмент — чоппер. В него загружают смолу и рубленный стекломат, он соединяет внутри эти два компонента и распыляет их как бы из пистолета. Этот метод обычно используют для полиэфирной или эпоксивинилэфирной смолы. Вручную невозможно изготовить композитный сэндвич.

Минусы:
— итоговые изделия получаются тяжелыми из-за избытка смолы
— вручную трудно сделать весь корпус равномерным
Плюсы:
— дешево, просто, не требует специальных знаний и оборудования

Ручная формовка + вакуумное обжатие — в этом случае слои ткани и смолы также наносятся вручную, потом на них надевается специальный мешок, который откачивает лишний воздух и избыток смолы. Воздух — это пузырьки в смоле, которые так или иначе там появляются при методе ручной формовки. Эти пузырьки нарушают однородность корпуса и снижают его прочность. При откачке воздуха финальное изделие получается практически таким же прочным, как при методе вакуумной инфузии. Откачивать воздух можно после укладки каждого слоя по отдельности или после формовки всех слоев. Используется в основном в работе с эпоксидной смолой.

Композитный сэндвич можно изготовить только с помощью метода вакуумного обжатия или вакуумной инфузии.

Минусы:
— трудозатратно, долго и дорого
— нужно специальное оборудование
Плюсы:
— метод дает гарантированный результат, трудно что-то испортить в процессе

Вакуумная инфузия — в этом случае все сухие компоненты сэндвича (кроме смолы) выкладываются в форму-матрицу. Потом матрицу накрывают специальным вакуумным мешком, который откачивает весь воздух и сжимает компоненты. Затем вместо вакуума в деталь подается смола. Благодаря вакууму удается максимально точно контролировать количество смолы, а значит производить детали минимального веса. Метод требует высококвалифицированных специалистов и сложного оборудования. Если в производственном процессе допустить ошибку, есть риск испортить весь корпус и все задействованные материалы.

Минусы:
— нужно специальное оборудование
— требует строителей высокой квалификации
Плюсы:
— безупречное качество корпуса при соблюдении технологии
— при работе с большими объектами выгоднее с точки зрения трудозатрат

Запекание (prepeg) — самый высокотехнологичный метод, используется исключительно при работе с углеволокном. Для него необходим специально оборудованный цех-печь, где можно четко контролировать температуру и влажность.

Корпус яхты изготавливают из особого вида углеткани, сразу пропитанной смолой. Такая ткань перевозится в холодильниках и имеет короткий срок хранения. Из нее вручную формуют корпус яхты при температуре около 18 градусов и влажности не больше 60%. Потом конструкция обжимается вакуумным мешком и целиком запекается при температуре около 100 градусов.

Этот метод позволяет создать максимально легкий и прочный корпус. Например, вес яхты длиной 72 фута без оснастки, оборудования и киля получается около 2700 кг. Запекание используют в строительстве самых быстрых в мире гоночных яхт.

Плюсы:
— минимальный вес корпуса при нужной прочности
Минусы:
— очень дорогие материалы
— сложный и трудоемкий технологический процесс

Читать еще:  Каким материалом отделать стены кухни

Какие материалы и технологии используют на верфи Pacifico

Создание корпуса на верфи Pacifico Yachts состоит из нескольких этапов. Для каждой модели есть своя матрица и свои особенности производственного процесса в зависимости от технического проекта и итоговых характеристик яхты.

Поэтому разбирать этапы будем на конкретном примере — строительстве корпуса Pacifico Voyager 99. Нижняя часть корпуса этого проекта полностью монолитна, поэтому формуется в одной большой матрице.

Этап 1. Работа начинается с подготовки и полировки внутренней поверхности матрицы.

Этап 2. После подготовительных работ, наносят внешний слой — гелькоут. Мы используем гелькоут на полиэфирной основе и наносим его пистолетом.

Этап 3. После этого вручную формуется «корка» из стекломата и эпоксивинилэфирной смолы. «Корка» нужна для того, чтобы основной слой корпуса из эпоксидной смолы крепко соединился с полиэфирным гелькоутом.

Этап 4. После того, как сформирована «корка», начинается формовка основного слоя — вручную укладывается сухая основа композитного сэндвича: стеклоткань + ПХВ + углеткань. Плетение и направление ткани выкладывается строго в соответствии с техническим проектом.

Этап 5. Корпус формуется методом вакуумной инфузии: конструкция обтягивается вакуумный мешком, из детали откачивается воздух, затем подается эпоксидная смола.

Этап 6. Смола отвердевает в течение 24 часов, затем корпус извлекается из матрицы и на нем начинаются технические работы.

В результате мы получаем эпоксидный корпус из стеклопластика, армированный углеволокном. Композитный сэндвич с ПВХ добавляет поверхностной прочности — корпус легко выдерживает удар кувалдой или столкновение с камнем, но все еще остается достаточно легким. Сочетание этих технологий и материалов позволяет нам строить быстрые и относительно экономичные катамараны, но при этом сохранять адекватную стоимость конечного продукта.

В этой статье мы разобрали большинство материалов и технологий производства. От них во многом зависят качество и технические характеристики готовой лодки: скорость, экономичность, долговечность и, конечно, цена. Но важно понимать, что в этом деле нет черного и белого, нет однозначно правильных или неправильных подходов к производству — каждый из них отвечает определенной задаче.

Композитный материал что это

Композиты обычно классифицируются по виду армирующего наполнителя: [1]

  • волокнистые (армирующий компонент — волокнистые структуры);
  • слоистые;
  • наполненные пластики (армирующий компонент — частицы)
    • насыпные (гомогенные),
    • скелетные (начальные структуры, наполненные связующим).

Преимущества композиционных материалов

Главное преимущество КМ в том, что материал и конструкция создается одновременно. Исключением являются препреги, которые являются полуфабрикатом для изготовления конструкций. Стоит сразу оговорить, что КМ создаются под выполнение данных задач, соответственно не могут вмещать в себя все возможные преимущества, но, проектируя новый композит, инженер волен задать ему характеристики значительно превосходящие характеристики традиционных материалов при выполнении данной цели в данном механизме, но уступающие им в каких-либо других аспектах. Это значит, что КМ не может быть лучше традиционного материала во всём, то есть для каждого изделия инженер проводит все необходимые расчёты и только потом выбирает оптимум между материалами для производства.

Причём, разные классы композитов могут обладать одним или несколькими преимуществами. Некоторых преимуществ невозможно добиться одновременно.

Недостатки композиционных материалов

Композиционные материалы имеют достаточно большое количество недостатков, которые сдерживают их распространение.

Высокая стоимость

Высокая стоимость КМ обусловлена высокой наукоёмкостью производства, необходимостью применения специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Анизотропия свойств

Анизотропия — непостоянство свойств КМ от образца к образцу. Для компенсации анизотропии увеличивают коэффициент запаса прочности, что может нивелировать преимущество КМ в удельной прочности. Таким примером может служить опыт применения КМ при изготовлении вертикального оперения истребителя МиГ-29. Из-за анизотропии применявшегося КМ вертикальное оперение было спроектировано с коэффициентом запаса прочности кратно превосходящим стандартный в авиации коэффициент 1,5, что в итоге привело к тому, что композитное вертикальное оперение Миг-29 оказалось равным по весу конструкции классического вертикального оперения, сделанного из дюралюминия.

Низкая ударная вязкость

Низкая ударная вязкость также является причиной повышения коэффициента запаса прочности. Кроме этого, низкая ударная вязкость обуславливает высокую повреждаемость изделий из КМ, высокую вероятность возникновения скрытых дефектов, которые могут быть выявлены только инструментальными методами контроля.

Высокий удельный объем

Высокий удельный объем является существенным недостатком при применении КМ в областях с жесткими ограничениями по занимаемому объему. Это относится, например, к сверхзвуковым самолётам, у которых даже незначительное увеличение объема самолёта приводит к существенному росту волнового аэродинамического сопротивления.

Гигроскопичность

Композиционные материалы гигроскопичны, т.е. склонны впитывать влагу, что обусловлено несплошностью внутренней структуры КМ. При длительной эксплуатации и многократном переходе температуры через 0 по Цельсию вода, проникающая в структуру КМ, разрушает изделие из КМ изнутри (эффект по природе аналогичен разрушению автомобильных дорог в межсезонье). Так одной из возможных причин авиакатастрофы American Airlines Flight 587, в которой от фюзеляжа оторвался композитный киль, названо разрушение структуры композитного киля от периодически замерзавшей в ней воды. Аналогичные примеры отделения композитного киля от фюзеляжа происходили также в России. [2]

КМ могут впитывать также другие жидкости, обладающие высокой проникающей способностью, например, авиационный керосин.

Токсичность

При эксплуатации КМ могут выделять пары, которые часто являются токсичными. Если из КМ изготавливают изделия, которые будут располагаться в непосредственной близости от человека (таким примером может послужить композитный фюзеляж самолета Boeing 787 Dreamliner), то для одобрения применяемых при изготовлении КМ материалов требуются дополнительные исследования воздействия компонентов КМ на человека.

Низкая эксплуатационная технологичность

Композиционные материалы обладают низкой эксплуатационной технологичностью, низкой ремонтопригодностью и высокой стоимостью эксплуатации. Это связано с необходимостью применения специальных трудоемких методов, специальных инструментов для доработки и ремонта объектов из КМ. Часто объекты из КМ вообще не подлежат какой-либо доработке и ремонту.

Области применения

Товары широкого потребления

  • Железобетон — один из старейших и простейших композиционных материалов
  • Удилища для рыбной ловли из стеклопластика и углепластика
  • Лодки из стеклопластика
  • Автомобильные покрышки
  • Металлокомпозиты

Спортивное оборудование

  • оборудование для горнолыжного спорта — палки и лыжи
  • Хоккейные клюшки и коньки
  • байдарки, каноэ и вёсла к ним

Машиностроение

В машиностроении композиционные материалы широко применяются для создания защитных покрытий на поверхностях трения, а также для изготовления различных деталей двигателей внутреннего сгорания (поршни, шатуны).

Характеристика

Технология применяется для формирования на поверхностях в парах трения сталь-резина дополнительных защитных покрытий. Применение технологии позволяет увеличить рабочий цикл уплотнений и валов промышленного оборудования, работающих в водной среде.

Композиционные материалы состоят из нескольких функционально отличных материалов. Основу неорганических материалов составляют модифицированные различными добавками силикаты магния, железа, алюминия. Фазовые переходы в этих материалах происходят при достаточно высоких локальных нагрузках, близких к пределу прочности металла. При этом на поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок, благодаря чему удается изменить структуру поверхности металла.

Полимерные материалы на основе политетрафторэтиленов модифицируются ультрадисперсными алмазографитовыми порошками, получаемыми из взрывных материалов, а также ультрадисперсных порошков мягких металлов. Пластифицирование материала осуществляется при сравнительно невысоких (менее 300 °C) температурах.

Металлоорганические материалы, полученные из природных жирных кислот, содержат значительное количество кислотных функциональных групп. Благодаря этому взаимодействие с поверхностными атомами металла может осуществляться в режиме покоя. Энергия трения ускоряет процесс и стимулирует появление поперечных сшивок.

Технические характеристики

Защитное покрытие в зависимости от состава композиционного материала может характеризоваться следующими свойствами:

  • толщина до 100 мкм;
  • класс чистоты поверхности вала (до 9);
  • иметь поры с размерами 1 — 3 мкм;
  • коэффициент трения до 0,01;
  • высокая адгезия к поверхности металла и резины.

Технико-экономические преимущества

  • На поверхности формируется высокопрочный металлокерамический слой в зоне высоких локальных нагрузок;
  • Формируемый на поверхности политетрафторэтиленов слой имеет низкий коэффициент трения и невысокую стойкость к абразивномуизносу;
  • Металлоорганические покрытия являются мягкими, имеют малый коэффициент трения, пористую поверхность, толщина дополнительного слоя составляет единицы микрон.

Области применения технологии

  • нанесение на рабочую поверхность уплотнений с целью уменьшения трения и создания разделительного слоя, исключающего налипание резины на вал в период покоя.
  • высокооборотные двигатели внутреннего сгорания для авто и авиастроения.

Авиация и космонавтика

В авиации и космонавтике с 1960-х годов существует настоятельная необходимость в изготовлении прочных, лёгких и износостойких конструкций. Композиционные материалы применяются для изготовления силовых конструкций летательных аппаратов, искусственных спутников, теплоизолирующих покрытий шатлов, космических зондов. Всё чаще композиты применяются для изготовления обшивок воздушных и космических аппаратов, и наиболее нагруженных силовых элементов.

Вооружение и военная техника

Благодаря своим характеристикам (прочности и лёгкости) КМ применяются в военном деле для производства различных видов брони:

Литература

  • Васильев В. В. Механика конструкций из композиционных материалов. — М.: Машиностроение, 1988. — 272 с.
  • Карпинос Д. М. Композиционные материалы. Справочник. — Киев, Наукова думка

См. также

Примечания

  1. Дж. Любин. 1.2 Термины и определения // Справочник по композиционным материалам: В 2-х кн = Handbook of Composites. — М .: Машиностроение, 1988. — Т. 1. — 448 с. — ISBN 5-217-00225-5
  2. Игорь МангазеевАндреапольские МиГи разваливаются от старости. Тверской информационный портал eTver (27-01-2009). Архивировано из первоисточника 4 августа 2012.

Ссылки

Композиционный материал на Викискладе ?
  • «Композиты из наукограда» Телесюжет
  • «Технология черного крыла» Телесюжет
Конструкционные строительные материалы
Бетон • Сталь • Древесина
Кровельные материалыТоль • Рубероид • Черепица • Шифер
Отделочные материалыОбои • Паркет • Линолеум
Облицовочные материалыОблицовочный камень • Керамическая плитка
Природные строительные материалыПриродный камень • Песок • Пиломатериалы‎
Читать еще:  Облицовочные материалы для наружных стен

композиционный материал — 3.3 композиционный материал: Материал, содержащий активный резиновый порошок в качестве основы, а также целевые и функциональные добавки, предназначенный для модифицирования асфальтобетонных смесей. Источник … Словарь-справочник терминов нормативно-технической документации

Композиционный материал — Composite material Композиционный материал. Комбинации из двух или более материалов (упрочняющие элементы, наполнители и составное матричное вяжущее вещество), отличающихся по форме, композиции, размерам. Составляющие части сохраняют свои… … Словарь металлургических терминов

композиционный материал — kompozitas statusas T sritis radioelektronika atitikmenys: angl. composite; composite material vok. Verbundstoff, m rus. композит, m; композиционный материал, m pranc. composite, f; matériau composite, m … Radioelektronikos terminų žodynas

композиционный материал — kompozitas statusas T sritis chemija apibrėžtis Daugiakomponentė medžiaga, sudaryta iš rišiklio (polimeras, metalas, keramika ir kt.) ir jį sustiprinančios armuojančios medžiagos. atitikmenys: angl. composite rus. композит; композиционный… … Chemijos terminų aiškinamasis žodynas

композиционный материал (металлургия) — композиционный материал Комбинации из двух или более материалов (упрочняющие элементы, наполнители и составное матричное вяжущее вещество), отличающихся по форме, композиции, размерам. Составляющие части сохраняют свои свойства, т. е. они не… … Справочник технического переводчика

композиционный материал для изготовления конструкций и элементов — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN structural composite … Справочник технического переводчика

композиционный материал (композит) — 3.13 композиционный материал (композит): Материал, состоящий из непрерывных волокон и полимерного связующего. Источник … Словарь-справочник терминов нормативно-технической документации

КОМПОЗИЦИОННЫЙ МАТЕРИАЛ (КОМПОЗИЦИОННАЯ СТРУКТУРА) — матрица и дополнительная фаза или дополнительные фазы, состоящие из частиц армирующих наполнителей, волокон или их любого сочетания, предназначенные для определенной цели или целей … Словарь понятий и терминов, сформулированных в нормативных документах российского законодательства

Полимерные композиционные материалы : основные типы

Композиционные материалы (композиты) – многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Компонентами композитов являются самые разнообразные материалы – металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы – полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.

Полимерные композиционные материалы

Композиты, в которых матрицей служит полимерный материал, являются одним из самых многочисленных и разнообразных видов материалов. Их применение в различных областях дает значительный экономический эффект. Например, использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30% веса летательного аппарата. А снижение веса, например, искусственного спутника на околоземной орбите на 1 кг приводит к экономии 1000 долларов. В качестве наполнителей ПКМ используется множество различных веществ.

Стеклопластики

Полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Использование стеклопластиков началось в конце Второй мировой войны для изготовления антенных обтекателей – куполообразных конструкций, в которых размещается антенна локатора. В первых армированных стеклопластиках количество волокон было небольшим, волокно вводилось, главным образом, чтобы нейтрализовать грубые дефекты хрупкой матрицы. Однако со временем назначение матрицы изменилось – она стала служить только для склеивания прочных волокон между собой, содержание волокон во многих стеклопластиках достигает 80% по массе. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом. Стеклопластики – достаточно дешевые материалы, их широко используют в строительстве, судостроении, радиоэлектронике, производстве бытовых предметов, спортивного инвентаря, оконных рам для современных стеклопакетов и т.п.

Углепластики

Наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Термическая обработка волокна проводится, как правило, в три этапа (окисление – 220° С, карбонизация – 1000–1500° С и графитизация – 1800–3000° С) и приводит к образованию волокон, характеризующихся высоким содержанием (до 99,5% по массе) углерода. В зависимости от режима обработки и исходного сырья полученное углеволокно имеет различную структуру. Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков – чаще всего – термореактивные и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики – очень легкие и, в то же время, прочные материалы. Углеродные волокна и углепластики имеют практически нулевой коэффициент линейного расширения. Все углепластики хорошо проводят электричество, черного цвета, что несколько ограничивает области их применения. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медтехники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы – наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С. Существует несколько способов производства подобных материалов. По одному из них углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (2000° С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз. Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза. Из углеуглепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.

Боропластики

Композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Кроме того, стоимость борных волокон очень высока (порядка 400 $/кг) в связи с особенностями технологии их получения (бор осаждают из хлорида на вольфрамовую подложку, стоимость которой может достигать до 30% стоимости волокна). Термические свойства боропластиков определяются термостойкостью матрицы, поэтому рабочие температуры, как правило, невелики.

Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Органопластики

Композиты, в которых наполнителями служат органические синтетические, реже – природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40–70% наполнителя. Содержание наполнителя в органопластиках на основе термопластичных полимеров – полиэтилена, ПВХ, полиуретана и т.п. – варьируется в значительно больших пределах – от 2 до 70%. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе.

Важную роль в улучшении механических характеристик органопластика играет степень ориентация макромолекул наполнителя. Макромолекулы жесткоцепных полимеров, таких, как полипарафенилтерефталамид (кевлар) в основном ориентированы в направлении оси полотна и поэтому обладают высокой прочностью при растяжении вдоль волокон. Из материалов, армированных кевларом, изготавливают пулезащитные бронежилеты.

Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.

Полимеры, наполненные порошками

Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить доктор Бейкеленд (Leo H.Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола – вещество хрупкое, обладающее невысокой прочностью. Бейкеленд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал – бакелит – приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя – пресс-порошок — под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это – ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются по сей день.

Сейчас применяются разнообразные наполнители так термореактивных, так и термопластичных полимеров. Карбонат кальция и каолин (белая глина) дешевы, запасы их практически не ограничены, белый цвет дает возможность окрашивать материал.

Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д., полиэфирных стеклопластиков, наполнения полиэтилена и полипропилена. Добавление талька в полипропилен существенно увеличивает модуль упругости и теплостойкость данного полимера. Сажа больше всего используется в качестве наполнителя резин, но вводится и в полиэтилен, полипропилен, полистирол и т.п. По-прежнему широко применяют органические наполнители – древесную муку, молотую скорлупу орехов, растительные и синтетические волокна. Для создания биоразлагающихся композитов в качество наполнителя используют крахмал.

Читать еще:  Цветник из подручных материалов

Текстолиты

Слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов – покрытия для кухонных столов – трудно переоценить.

Основные принципы получения текстолитов сохранились, но сейчас из них формуют не только пластины, но и фигурные изделия. И, конечно, расширился круг исходных материалов. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, иногда даже применяются и неорганические связующие – на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Полимерные композиционные материалы : основные типы

Композиционные материалы (композиты) – многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.

Компонентами композитов являются самые разнообразные материалы – металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы – полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.

Полимерные композиционные материалы

Композиты, в которых матрицей служит полимерный материал, являются одним из самых многочисленных и разнообразных видов материалов. Их применение в различных областях дает значительный экономический эффект. Например, использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30% веса летательного аппарата. А снижение веса, например, искусственного спутника на околоземной орбите на 1 кг приводит к экономии 1000 долларов. В качестве наполнителей ПКМ используется множество различных веществ.

Стеклопластики

Полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Использование стеклопластиков началось в конце Второй мировой войны для изготовления антенных обтекателей – куполообразных конструкций, в которых размещается антенна локатора. В первых армированных стеклопластиках количество волокон было небольшим, волокно вводилось, главным образом, чтобы нейтрализовать грубые дефекты хрупкой матрицы. Однако со временем назначение матрицы изменилось – она стала служить только для склеивания прочных волокон между собой, содержание волокон во многих стеклопластиках достигает 80% по массе. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом. Стеклопластики – достаточно дешевые материалы, их широко используют в строительстве, судостроении, радиоэлектронике, производстве бытовых предметов, спортивного инвентаря, оконных рам для современных стеклопакетов и т.п.

Углепластики

Наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Термическая обработка волокна проводится, как правило, в три этапа (окисление – 220° С, карбонизация – 1000–1500° С и графитизация – 1800–3000° С) и приводит к образованию волокон, характеризующихся высоким содержанием (до 99,5% по массе) углерода. В зависимости от режима обработки и исходного сырья полученное углеволокно имеет различную структуру. Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков – чаще всего – термореактивные и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики – очень легкие и, в то же время, прочные материалы. Углеродные волокна и углепластики имеют практически нулевой коэффициент линейного расширения. Все углепластики хорошо проводят электричество, черного цвета, что несколько ограничивает области их применения. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медтехники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы – наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С. Существует несколько способов производства подобных материалов. По одному из них углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (2000° С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз. Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза. Из углеуглепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.

Боропластики

Композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Кроме того, стоимость борных волокон очень высока (порядка 400 $/кг) в связи с особенностями технологии их получения (бор осаждают из хлорида на вольфрамовую подложку, стоимость которой может достигать до 30% стоимости волокна). Термические свойства боропластиков определяются термостойкостью матрицы, поэтому рабочие температуры, как правило, невелики.

Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Органопластики

Композиты, в которых наполнителями служат органические синтетические, реже – природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40–70% наполнителя. Содержание наполнителя в органопластиках на основе термопластичных полимеров – полиэтилена, ПВХ, полиуретана и т.п. – варьируется в значительно больших пределах – от 2 до 70%. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе.

Важную роль в улучшении механических характеристик органопластика играет степень ориентация макромолекул наполнителя. Макромолекулы жесткоцепных полимеров, таких, как полипарафенилтерефталамид (кевлар) в основном ориентированы в направлении оси полотна и поэтому обладают высокой прочностью при растяжении вдоль волокон. Из материалов, армированных кевларом, изготавливают пулезащитные бронежилеты.

Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.

Полимеры, наполненные порошками

Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить доктор Бейкеленд (Leo H.Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола – вещество хрупкое, обладающее невысокой прочностью. Бейкеленд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал – бакелит – приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя – пресс-порошок — под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это – ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются по сей день.

Сейчас применяются разнообразные наполнители так термореактивных, так и термопластичных полимеров. Карбонат кальция и каолин (белая глина) дешевы, запасы их практически не ограничены, белый цвет дает возможность окрашивать материал.

Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д., полиэфирных стеклопластиков, наполнения полиэтилена и полипропилена. Добавление талька в полипропилен существенно увеличивает модуль упругости и теплостойкость данного полимера. Сажа больше всего используется в качестве наполнителя резин, но вводится и в полиэтилен, полипропилен, полистирол и т.п. По-прежнему широко применяют органические наполнители – древесную муку, молотую скорлупу орехов, растительные и синтетические волокна. Для создания биоразлагающихся композитов в качество наполнителя используют крахмал.

Текстолиты

Слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов – покрытия для кухонных столов – трудно переоценить.

Основные принципы получения текстолитов сохранились, но сейчас из них формуют не только пластины, но и фигурные изделия. И, конечно, расширился круг исходных материалов. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, иногда даже применяются и неорганические связующие – на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.

Ссылка на основную публикацию
Adblock
detector
×
×